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SUMMARY

One of the outstanding problems in data assimilation has been and continues to be how

best to utilize satellite data while balancing the tradeoff between accuracy and computational

cost. A number of weather prediction centers have recently achieved remarkable success in

improving their forecast skill by changing the method by which satellite data are assimilated

into the forecast model from the traditional approach of assimilating retrievals to the di-

rect assimilation of radiances in a variational framework. The operational implementation of

such a substantial change in methodology involves a great number of technical details, e.g.,

pertaining to quality control procedures, systematic error correction techniques, and tuning

of the statistical parameters in the analysis algorithm. Although there are clear theoretical

advantages to the direct radiance assimilation approach, it is not obvious at all to what

extent the improvements that have been obtained so far can be attributed to the change in

methodology, or to various technical aspects of the implementation. The issue is of interest

because retrieval assimilation retains many practical and logistical advantages which may

become even more significant in the near future when increasingly high-volume data sources
become available.

The central question we address here is: how much improvement can we expect from as-

similating radiances rather than retrievals, all other things being equal? We compare the two

approaches in a simplified one-dimensional theoretical framework, in which problems related

to quality control and systematic error correction are conveniently absent. By assuming a

perfect radiative transfer model and perfect knowledge of radiance and background error

covariances, we are able to formulate a nonlinear local error analysis for each assimilation

method. Direct radiance assimilation is optimal in this idealized context, while the tradi-

tional method of assimilating retrievals is suboptimal because it ignores the cross-covariances

between background errors and retrieval errors. We show that interactive retrieval assimila-

tion (where the same background used for assimilation is also used in the retrieval step) is
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equivalentto direct assimilationof radiances with suboptimal analysis weights. By examining

the weights in different scenarios, e.g., when the dependence of the retrieval on background

information varies, we are able to conclude that the effect of neglecting the cross-covariances

in retrieval assimilation is potentially most harmful for vertical modes for which the infor-

mation content of the background roughly balances the information content of the radiance

data.

We illustrate and extend these theoretical arguments with several one-dimensional as-

similation experiments, where we estimate vertical atmospheric profiles using simulated data

from both the High-resolution InfraRed Sounder 2 (HIRS2) and the future Atmospheric In-

fraRed Sounder (AIRS). The improvement in analysis accuracy obtained by directly assimi-

lating the radiance data, rather than interactively retrieved profiles, is generally small in our

experiments. In case of non-interactive retrievals the results depend very much on the qual-

ity of the background information used for the retrieval step. In all cases, the impact of the

choice of assimilation method is dwarfed by the effect of changing some of the experimental

parameters that control the simulated error characteristics of the data and the background.

In practice, of course, the uncertainties in many of these parameters are considerable, since

radiative transfer models are far from perfect, and radiance and background error covari-

ances are not accurately known. These issues affect all assimilation methods and must be

dealt with in details of implementation, which will then ultimately determine the quality of

the assimilation products.

i. INTRODUCTION

A data assimilation system (DAS) estimates the state of the atmosphere by combining

different types of atmospheric observations with a short-term model forecast (often referred

to as the first-guess or background field). Assimilated data types include, for example, in

situ measurements of temperature, moisture, and wind, obtained from radiosonde soundings.

Such conventional observations have a high vertical resolution but their geographical coverage

is mostly limited to land areas in the northern hemisphere. Satellite observations, on the

other hand, provide a more uniform spatial coverage but are hampered by a relatively poor

vertical resolution. This stems from the fact that the satellite-borne instruments measure

quantities that are functionals of the atmospheric state variables, such as radiances emitted in

certain spectral bands, or integrals of atmospheric refractivity, rather than the state variables

themselves.

Two basic approaches have been used to incorporate measurements from remote sound-

ing instruments, such as the TIROS vertical operational sounder (TOVS), in data assimila-
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tion systems: (1) Assimilate radiances (either clear, cloudy, or cloud-cleared to remove the

effects of cloud) directly; (2) Assimilate geophysical products (retrievals) obtained from the

observed radiances. Several operational NWP centers have recently moved from the more

traditional approach of assimilating retrieved products to radiance assimilation using a vari-

ational approach (e.g., Andersson et al. 1994, 1998; Derber and Wu 1998). There are strong

indications that the implementation of direct radiance assimilation at the National Centers

for Environmental Prediction (NCEP) has resulted in a large positive impact on forecast

skill, both in the northern and southern hemispheres (Derber and Wu 1998). However, a

number of changes were introduced simultaneously to the NCEP DAS, including improve-

ments in quality control and systematic error correction algorithms. It would be extremely

interesting to study the performance of various assimilation techniques by means of a con-

trolled set of experiments using a fixed DAS and a single, quality-controlled input data set

with a fixed systematic error correction scheme. G. Paul (private communication, 1997) has

shown that the assimilation of TOVS retrievals can be dramatically improved with rigorous

quality control and that the impact of quality-controlled retrievals can be comparable to

that obtained with radiance assimilation.

The shift toward radiance assimilation has resulted in part from theoretical work by Eyre

et al. (1993), who argued that assimilation of retrieved products amounts to a suboptimal

use of the data. Retrievals are produced by combining observations with a prior estimate of

the state of the atmosphere, possibly obtained from a forecast model, from climatological

data, or from a data base of physically feasible vertical profiles. By assimilating the retrievals

rather than the radiances into a DAS, additional information from the prior estimate will

enter the system along with the measurement information. Errors in retrievals partly depend

on the errors in the prior estimate used to produce them, and it is reasonable to expect that

the latter are correlated with the errors in the background field used for the assimilation. The

resulting cross-covariances between retrieval and background errors are not easily quantified

and usually ignored in the assimilation. Clearly, if the retrieval strongly depends on prior

information, and if the retrieval errors are misrepresented in the assimilation system, then

the assimilation will be suboptimal.

In selecting an appropriate assimilation method, computational and other practical is-
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suesmust be consideredaswell. Even if radiance assimilation is more desirablefrom a the-

oretical point of view, the computational cost of assimilating retrievals can be significantly

less.This is especiallypertinent for advancedsoundinginstruments suchasthe Atmospheric

InfraRed Sounder(AIRS), which will fly on NASA's Earth ObservingSystemPM Platform,

and the Infrared AtmosphericSoundingInterferometer (IASI), to fly on the EuropeanMete-

orologicalSatellite (EUMETSAT) Polar System.Theseinstruments haveoneor two orders

of magnitudemorespectralchannelsavailablethan TOVS. Becauseof this dramatic increase

in data volume, computational costsand simplified logisticsmay ultimately be the decisive

factors in choosingan appropriate assimilation strategy for these instruments. A dedicated

scienceteam has been formed for the AIRS instrument whosetask in part is to produce

high-quMity retrievedproducts that could be usedfor data assimilation. Combining the ex-

perience, expertise, and algorithm development of data assimilation centers and instrument

teams would be highly beneficial to both groups.

In Joiner and da Silva (1998), referred to as Part I in this article, we explored various

alternatives to radiance assimilation, with an eye toward the assimilation of future data from

advanced sounding instruments. For data assimilation systems such as the Physical-space

Statistical Analysis System (PSAS) that has been developed at the NASA Goddard Data

Assimilation Office (DAO), the computational cost goes up dramatically as the number of

observations increases. Therefore, we focused in Part I on methods to compress the radi-

ance information from high spectral resolution instruments. For AIRS and IASI, the cost

of assimilating radiances will be significantly greater than that of assimilating retrievals in

a PSAS-type DAS. The number of AIRS and IASI radiance measurements for temperature

soundings can be 50 times larger than the number of useful pieces of information for a DAS.

We showed in Part I that a compact representation of a retrieved product can be defined from

which the retrieval prior information has been largely removed. The information content of

the compact retrieval is essentially the same as that of the original set of radiance measure-

ments. Consequently, the assimilation of compact retrievals (or compressed radiances) results

in nearly optimal analyses, while retaining some of the practical advantages of traditional

retrieval assimilation.

In the present paper we address the following question: how much deterioration actu-
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ally resultsfrom a suboptimal assimilationof retrievedproducts,due to correlationsbetween

retrieval and forecasterrors?Starting from the nonlinear statistical analysisequations,we

comparethe analysiserrors obtained by suboptimal assimilationof retrievals (i.e., by ne-

glecting to accountfor the cross-covariancesbetweenretrieval and backgrounderrors) with

the errors that would result from optimal radianceassimilation. We consider interactive re-

trievals, for which the retrieval prior estimate is identical to the background used in the

assimilation, as a special case. The error analysis is illustrated with one-dimensional assimi-

lation experiments using simulated data from high- and low-resolution infrared sounders.

The outline of the paper is as follows. In section 2 we present a general error analysis

for various assimilation methods. We first review the statistical analysis equations for non-

linear observation operators. We then apply these equations to the error analysis of radiance

assimilation. We briefly discuss the production of 1D retrievals, followed by the error anal-

ysis for retrieval assimilation. We then show that in the 1D case, suboptimal assimilation

of interactive retrievals is equivalent to direct radiance assimilation with a modified (and

therefore suboptimal) gain. This result allows us to assess the impact on analysis errors of

cross-covariances between retrieval and background errors. In section 3 we describe the con-

figuration and results of our numerical experiments. We briefly discuss our conclusions and

future work in section 4.

2. ERROR ANALYSIS FOR VARIOUS ASSIMILATION METHODS

Here we derive approximate expressions for the analysis error covariances associated with

the direct assimilation of radiances on the one hand and with the suboptimal assimilation

of 1D retrievals on the other. We are primarily concerned with the impact of neglecting the

cross-covariances between retrieval and background errors in retrieval assimilation. In prac-

tice, of course, there are many additional approximations involved in assimilating remotely

sensed data. Minimum-variance assimilation of observations into a DAS requires the com-

plete specification of observation and background error covariances, which are--at best--only

approximately known. However in this section we assume that both the observation error

covariance (including both instrument and transfer model errors) and the background error

covariance are known. This implies the possibility of optimal direct radiance assimilation.
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The resulting analysis error covariance can then be regarded as a lower bound or benchmark

for other assimilation methods.

( a) Nonlinear statistical analysis

The objective of statistical analysis is to produce a statistically accurate estimate of

the atmospheric state, given a set of observations and a background usually in the form of a

short-term forecast. The variational framework (e.g., Lorenc 1986; Talagrand 1988) provides

an estimate of the state by minimizing the functional

J(w) = (w - wl)T(Pf)-'(w-- w I) + (w ° -- h(w))TR-l(w ° - h(w)), (1)

where the unknown vector w represents the 3D state of the atmosphere, w ! is the background

estimate (first guess), w ° is the observation vector, P] is the background error covariance

matrix, R is the observation error covariance matrix, and h(w) is the observation operator

(generally nonlinear) that maps the 3D atmospheric state into observables. If the background

and observation errors are unbiased, normally distributed, and uncorrelated with each other,

and if the covariances PI and R are correctly specified, then the analysis state obtained by

minimizing J(w) is the mode of the conditional probability density function p(wIw] LI w °)

(Jazwinski 1970).

The minimum of J(w) can be obtained by a quasi-Newton iteration of the form

w,+l = w ] + K, [w ° - h(w,) + H,(w,- wf)], (2)

(e.g., Rodgers, 1976) where the subscript i denotes the iteration, K is the Kalman gain

matrix given by

K, = P]H T (H,PfH T + R)-', (3)

and Hi is a linearized version of h, i.e.,

0h(w)
H_- (9w w=w,"

The analysis vector, w", is the state obtained at convergence:

(4)

W a = lim w_. (5)
i--_oo
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At convergence, (2) becomes

w" = w ]+K[w °-h(w _)+H(w _-wI)]

= + K[w°- Hw ]- K[h(w°)- aw°], (6)

where

K = PfH T (HPIH T + R) -1 , (7)

0h(w) w=w-" (8)H - 0w

We will refer to equations (6-8) collectively as the nonlinear analysis equations.

If the observation operator is linear, then the matrix H is constant and h(w) = Hw (only

a single iteration of (2) is needed in that case). The analysis equation (6) then becomes

w"= w I + K [w °- Hwl], (9)

• If we now consider the possibility of cross-covariance between background and observation

errors, denoted by X, it follows that the analysis error covariance P_ is

P_ = (I- KH)P !(I- KH) T + KRK T

+ KX(I- KH) T + (I- KH)XTK T. (10)

This expression is valid for any gain matrix K (e.g., for the optimal gain given by (7) or any

suboptimal gain). If background and observation errors are uncorrelated, then X = 0 and

(10) reduces to

P_ = (I- KH)Pf(I- KH) T + KRK T. (11)

If, in addition, K is given by (7), then this expression further reduces to

P" = (I- KH)P I. (12)

In case of a nonlinear observation operator this error analysis is inexact, due to the presence

of the term K[h(w _) - Hw _] in (6). The expressions (10-12) can be used to approximate the

actual analysis error covariances when the linearized observation operator H is evaluated at

w = w _, as in (8). The local accuracy of the approximations then depends on the magnitude

of the linearization error [h(w) - Hw] at w = w _.
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(b) Optimal direct radiance assimilation

The observation operator associated with radiance measurements involves an approx-

imate radiative transfer or empirical model, which we denote by f(z, b). This model can

be used to simulate radiances given any state z. The vector b represents state-independent

model parameters. The state variables z of the radiative transfer model are generally compat-

ible with the state variables w of the background--in the sense that both vectors are discrete

representations of the same geophysical quantities in the same physical domain. However, z

and w are not necessarily defined at the same locations, so that interpolation is needed to

change from one state representation to another. The observation operator associated with

radiance assimilation is therefore

h(w) = f(z, b) = f(Zw, b), (13)

where Z is an interpolation operator that maps forecast model state variables to the state

representation of the radiative transfer model. The linearized observation operator H is then

Oh Of Oz
H- - -FZ, (14)

0w 0z 0w

with F the Jacobian of the radiative transfer model. The nonlinear analysis equations (6-8)

applied to radiance assimilation are therefore

w a = w/+K y[y-FZw/]-K y[f(Zw _,b)-FZw_], (15)

K u = p/ZTF T (FZp/ZTF T+Ry) -' , (16)

Of
f- (17)

where y is a vector of radiance measurements, and R u is the radiance (or equivalent bright-

ness temperature) error covariance accounting for both instrument error and transfer model

error, as discussed in Part 1, by Eyre et al. (1993), and by Rodgers (1990). If the assumption

holds that radiance and background errors are uncorrelated, then the linear approximation

(12) applies. The analysis error covariance for optimal direct radiance assimilation, therefore,

is approximately

P_ _ (I - KYFZ )P/= (I - KUFZ )P/(I - KUFZ )T + KURU(Ky)T. (18)
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The accuracy of this approximation dependson the sizeof the transfer model lineariza-

tion error [f(z, b) - f(z _,b) - F(z - z_)] at z -- Z w _. The expression (18) serves as a lower

bound for other, suboptimal, assimilation methods.

( c) Production of optimal 1D retrievals

A satellite-based remote sounding instrument measures radiances in a number of spectral

intervals for each pixel in the instrument field-of-view. For both nadir and limb viewing

instruments, these radiances can then be used to estimate (or retrieve) a vertical profile of

atmospheric parameters such as temperature or humidity. A prior state estimate is needed

to supplement the measurement information if the observing system does not completely

resolve the vertical structure of the profile. The physics of radiative transfer generally make

nadir viewing instruments insensitive to the high frequency components of the atmosphere's

vertical structure. Therefore, retrievals produced from nadir sounding microwave and infrared

instruments such as the TOVS may include a significant amount of information from the

prior estimate.

The retrieval process is analogous to the general data assimilation problem described

in section 2. That is, the retrieval z r is a state estimate obtained by combining radiance

measurements y with a prior state estimate (or background) zp, by means of an estimator

D:

z_= D (y, b, zP). (19)

The retrieval z _ can be regarded as a one-dimensional analysis of the atmospheric state.

In practice (19) is solved repeatedly, using different subsets of the radiance observations,

to produce a set of vertical profiles defined at the horizontal locations within the satellite

swath.

Errors associated with 1D retrievals defined at different locations are not independent.

It can be shown (e.g., Part I) that

R z ,-_ (I - DyF) PP (I - D_F) T + D_RYD T, (20)

is a linear approximation to the retrieval error covariance, where

0D

Dy=_y z=zr, (21)
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and PP is the error covarianceassociatedwith the prior state estimate. The latter involves

horizontal aswellasvertical correlations,and (20) thereforeshowsthat the errors in retrievals

at different locations must be correlatedas well. Note the analogy betweenthis expression

for the retrieval error covarianceRz and (11); seealso Eyre (1987)and Rodgers(1990).

Sofar we havenot made any assumptionsabout the nature of the retrieval algorithm,

symbolically expressedby the operator D in (19). Given the prior estimate zp and inde-

pendentdata y, the optimal nonlinearone-dimensionalretrieval zr minimizes the likelihood

functional

J(z) = (z - zP)T(Pv)-X(z -- z p) + (y -- f(z, b))T(Ry)-I(y - f(z, b)). (22)

The analogy with (1), which is a three-dimensional version of (22), is clear. The nonlinear

analysis of the previous sections can be applied here as well, and so it follows that the optimal

nonlinear 1D retrieval satisfies

z r = z p+Dy[y-Fz p]-D u[f(z r,b)-Fz_], (23)

Dy : PVFT (FP'F T + RU) -1 , (24)

Of

F- (25)

The error covariance of the optimal 1D-retrieval is approximately

R z ,_ (I - D_F)P p. (26)

The accuracy of this approximation depends on the size of the transfer model linearization

error [f(z, b) - Fz] at z = z _.

In practice the retrieval error covariance is not computed by either (20) or (26), but

rather modeled and/or estimated directly. Da Silva et al. (1996) provide empirical evidence

for the presence of both horizontally correlated and uncorrelated retrieval error components,

consistent with the two terms in (20). They also show how one can estimate the variances

of both components, as well as the decorrelation length of the horizontally correlated com-

ponent, based on the output of a DAS.

(i) Interactive retrievals
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Interactive retrievals axe produced by taking the same background used by the DAS

(i.e., a current short-term forecast) as the prior state estimate in the retrieval process. Then

z p = I w s (27)

and consequently

PP = 2: P]2: T

Substitution into (23-25) defines the optimal interactive 1D retrieval as

z r = 2:w !+Dy[y-FIw/]-Dy[f(z r,b)-Fz _]

Dy = _[ Pf][ TFT (F_ PIZ TFT + R y)-I,

Of
F - _zl,.=,_"

Using (26) and (28), the retrieval error covaxiance R _ is approximately

(2s)

(29)

(30)

(31)

R z _ (I - DyF)I PI2: T. (32)

It follows directly from the linear part of (29) that the retrieval/background error cross-

covariance X is approximately

X _ (I - DyF)2: Pf. (33)

Note that (32, 33) together imply

R z _ X_2: T, (34)

which would be exact in case of a linear radiative transfer model f. From (34) it is clear

that, in the general, nonlinear case, the retrieval-forecast error cross-covariance can be of the

same order of magnitude as the covariance of the retrieval error itself.

( d) Retrieval assimilation

In traditional retrieval assimilation the retrievals z _ are simply treated as observations

of the atmospheric state w. The observation operator is then linear:

h(w) =Zw, (35)
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since it merely involves interpolation from the forecastmodel state representationto the

retrieval state representation.The analysisis then simply

w°: w_+K_[_=-zw_], (36)

where K z is the gain matrix for retrieval assimilation, which we will now examine more

carefully.

Although the error analysis for retrieval assimilation is linear, it is complicated by the

fact that the retrieval errors partly depend on the errors in the prior state estimate used in

the retrieval process. It is likely, even in the case of non-interactive retrievals, that errors

in the prior estimate are correlated with errors in the forecast w ]. This could be caused,

for example, by a common dependence of the estimation errors on the current atmospheric

state. Therefore one has to assume in general that the retrieval errors are correlated with the

forecast errors as well. Given a retrieval-forecast error cross-covariance X, it can be shown

that the optimal gain (in the linear minimum-variance sense) is given by

÷
In practice, X is usually neglected because it is difficult to estimate; see, however, da Silva

et al. 1996. Furthermore, numerical solution of the analysis equations using (37) is com-

plicated when the cross-covariance terms are large, because the matrix K z° then becomes

ill-conditioned. Eyre et al. (1993) used the approach of Lorenc et al. (1986) to control the

associated numerical instabilities, by mapping the 1D retrievals into a reduced space and

then modifying both the retrievals and their error variances appropriately.

The (suboptimal) gain K _'o obtained by neglecting X in (37) is

K_,o: P_z_(ze_z_+R_)-1 (38)

Assimilation of retrievals using a gain matrix of this form has been implemented operationally

in a number of data assimilation systems (Goldberg et al. 1993; Susskind and Pfaendtner

1989).

We now examine the analysis equations for the assimilation of retrievals with an arbi-

trary gain matrix K _. Combining (23-25) with the retrieval analysis equation (36) gives

w _ = w ]+K z [z p+Dy(y-rz p)-Zw f]-K_Dy[f(z r,b)-Fzr], (39)
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of  _-zr (40)F - 0z "

Lacking an explicit relationship between the prior state estimate z p used in the retrieval

process and the forecast w/, equation (39) cannot be further simplified. Based on the linear

terms in (39), an approximation for the analysis error covariance is given by

e_ _. (I-UZZ)P/(i-UZ2 )T

+ (U _ - K*evF) e_ (K z - KZevF) T

+ (Kzey) ay (K_D_) T

+ (I - K*Z ) PP/(K * - K*DyF) T

+ (S z - K*DyF) PPI (I- K'Z) T . (41)

The first three terms in (42) involve error covariances of the forecast, radiance observations,

and the prior estimate for the retrieval, respectively. The last two terms involve the cross-

covariance PP/between prior estimation errors and forecast errors.

(i) Assimilation of interactive retrievals

Next we specialize to assimilating interactive retrievals, first with an arbitrary gain

matrix K _. Combining (29-31) with the retrieval analysis equation (36) gives

w _ = w / + KZDy [y- FZw/] - U*Dy [f(z r, b) - Fzr], (42)

D u = Z P/Z TFT (FZ P/Z TFT + (43)

of ,=,r" (44)F - 0z

Comparison with the nonlinear analysis equations (15-17) for direct radiance assimilation

shows precisely the sense in which the assimilation of interactive retrievals can be regarded

as a suboptimal form of direct radiance assimilation.

First, note that the Jacobian F is evaluated at z = Z w _ for radiance assimilation but

at z = z r for interactive retrieval assimilation. This discrepancy is strictly due to the non-

linearity of the radiative transfer model f(z, b). Second, the gain matrix K y for radiance

assimilation is replaced by K*Dv for retrieval assimilation. This modifies the linear terms

of the analysis equation and therefore represents the most significant difference between

radiance assimilation and retrieval assimilation.
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Let us now assume that the nonlinear component of the radiative transfer model is

small, i.e.,

f(Sz, b) _ FSz (45)

for a constant matrix F. This linearity assumption cannot be expected to be uniformly valid

(i.e., for all possible retrieval states z), but it should be reasonably accurate locally (i.e., for

z in some neighborhood of z = Z w_). Using (46) the linearized radiance analysis equations

(15-17) are

w _ = w ]+K y[y-FZw/], (46)

K = pSI TFT (FZp'ZrF T + -1 , (47)

On the other hand, the linearized interactive retrieval analysis equations (43-45) are

w ° = w _ + K _° [y-SZw/], (48)

K _,o = K_2:K _. (49)

The matrix factor KzZ multiplying K v in (50) reflects the fact that, in general, the as-

similation of retrieved products amounts to a suboptimal use of radiance data. A linear

approximation for the analysis error covariance associated with interactive retrieval assimi-

lation based on (49) is

P_ _(I- KY'°FZ)P/(I-KY'°FZ) T + KY'°RY(KY_°) T. (50)

Note that this expression does not involve the retrieval-forecast error cross-covariance X.

To assess the (linear) effect on the analysis error of, for example, neglecting the error cross-

covariance terms, (51) can be compared with (18) for optimal direct radiance assimilation.

Consider, for the moment, the optimal retrieval gain K z = K z° given by (37). Under the

linear approximation it follows from (34) that

K_°= (pIzT- X T) (Z P/Z T -zx ) -' . (51)

This expression shows that (47) and (49) would be identical but for the appearance of

the interpolation operator Z in several places. This proves the linear equivalence between

optimal radiance assimilation and optimal assimilation of optimal 1D retrievals, apart from
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interpolation effects. As mentioned earlier, however, the optimal retrieval gain is impractical

from a computational point of view. Using (34) again we have the alternative expression

U z° -_ (pf_T. T- X T) (][ Pf_T. T - az) -1 (52)

The second matrix factor on the right-hand side is difficult to invert, unless all its eigenvalues

are bounded away from zero. This condition is violated whenever the observing system does

not completely resolve the vertical structure of the profile, because in that case there is at

least one mode for which the retrieval accuracy is comparable to the forecast accuracy.

Of more practical interest is the following analysis for the suboptimal retrieval gain

K _ = K _'° defined by (38), which was obtained by neglecting the retrieval-forecast error cross-

covariances. We consider two extreme cases when (1) the retrievals are completely determined

by the radiance observations alone, or (2) the retrievals depend exclusively on the forecast,

which is the prior state estimate used in the interactive retrieval process. Substituting (32)

into (38), we obtain

Kz'°Z = PIzT (ZPIZ T -5 (I- DyF)Zp/zT)-I Z. (53)

Note that Kz'°Z is the matrix factor that modifies the optimal gain for the radiance data;

see (50). The linear part of the interactive retrieval equation (29) can be written

z r = [I- DyF] Zw ] + Dyy. (54)

If the state is overwhelmingly determined by the radiance observations, then D_F _ I, i.e.,

the retrieval is almost independent of the prior estimate w f (see Part I). Equation (54)

then shows that the difference between radiance assimilation and retrieval assimilation is

due only to the appearance of the interpolation operator Z; neglecting interpolations we

have Kz'°Z _ I. This shows, not unexpectedly, that in this case the effect of ignoring the

cross-covariance terms in the retrieval assimilation is negligible.

In the other extreme, suppose that the radiance observations contain virtually no in-

formation. Then DyF ._ 0, and (54) then implies that, ignoring interpolation effects, the

radiance data are assigned only half as much weight as they should be. On the other hand,

(48) implies that the optimal weights for the radiance data are very small to begin with
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in this situation, becausethe radianceerrors are solarge. Therefore the differencebetween

optimal radianceassimilationand suboptimal retrieval assimilation is negligible in this case

aswell.

The precedingargument appliesto each individual mode of the retrieved state. This

implies that the impact of ignoring the cross-covarianceterms in interactive retrieval assimi-

lation shouldbe largestfor modesthat aredeterminedpartly by the observationsand partly

by the forecastinformation.

3. ONE-DIMENSIONAL SIMULATION RESULTS

We compare the analysis errors for one-dimensional optimal radiance assimilation with

those for several suboptimal retrieval assimilations, using simulated Jacobians for two differ-

ent infrared sounders: the Atmospheric InfraRed Sounder (AIRS) and the High-resolution

InfraRed Sounder 2 (HIRS2). HIRS2 has flown continuously on polar-orbiting satellites from

1978 to the present as part of the TIROS Operational Vertical Sounder or TOVS (see Smith

et al. 1979). HIRS2 has 19 infrared channels, a single spot ground resolution at nadir of

17.4 km and scans cross-track -I-49.5 ° from nadir. AIRS is an advanced sounder with over

2000 channels that will fly on the NASA EOS PM platform in the year 2000 (Aumann and

Pagano, 1994). AIRS has similar spatial resolution and coverage as HIRS2, but the spectral

resolution is more than an order of magnitude greater.

We focus here on a single aspect of data assimilation for infrared sounders, namely the

temperature profile information contained in the radiances. The simulated HIRS2 channel

set includes 11 of the 20 channels (channels 1-7 and 13-16). These are affected mainly by

CO2 absorption and are typically used for temperature soundings. The AIRS channel set

includes all 550 available channels between 650 and 742 cm -1, between 2160 and 2270 cm -1,

and between 2379 and 2407 cm -1. These are the same channel sets used in Part I and we also

prescribe the same instrument specified equivalent noise temperatures as in Part I. Some of

the HIRS2 and AIRS channels are affected by water vapor absorption and/or the surface

skin temperature and emissivity, but for simplicity we assume these variables to be known.

As in Part I, the Jacobian F for each instrument is computed using a fast radiative

transfer algorithm based on parameterizations similar to the ones described in Susskind
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et al. (1983). The linearized observation operator H is equal to F, because for these one-

dimensional experiments Z = I. Radiance errors for different channels are assumed indepen-

dent, with variances equal to the sum of the squared channel equivalent noise temperatures

(NEAT) plus an additional (0.1K) 2 to account for linearization error. For simplicity, the

radiative transfer model is taken to be perfect, and we assume clear-sky night-time (i.e.,

no reflected solar radiation) and nadir-viewing conditions. These simulations are sufficiently

realistic to provide a meaningful comparison between the different assimilation approaches;

in particular, the same simplifying assumptions are made in all cases.

We specify a thickness forecast error covariance P/for our experiments at 18 pressure

levels (0.4, 1, 2, 5, 10, 30, 50, 70, 100, 150, 200, 250, 300, 400, 500, 700, 850, and 1000 hPa)

based on the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

6-hour forecast height el:ror covariances. These were estimated from time series of North-

American rawinsonde observed-minus-forecast residuals using the method described in Dee et

al. (1998a,b). Horizontal forecast error correlations do not play a role in these experiments.

Retrieval error covariances originally specified for temperature have been hydrostatically

converted to thickness error covariances.

For radiance assimilation experiments we use the linearized analysis equations (47, 48),

and estimate the analysis errors using (18). For interactive retrieval assimilation we use (36,

38), specify retrieval error covariances according to (32, 30), and estimate the analysis errors

using (51). In Part I we showed by means of Monte Carlo simulations that the linearized ex-

pressions for the analysis error covariances approximate the errors for this particular problem

quite well, although the actual errors are slightly underestimated.

( a) Interactive retrieval assimilation

(i) Using correct retrieval error covariances

Figure 1 shows the estimated thickness error standard deviations (in m), as a function

of pressure level, for radiance assimilation (solid curves) and for interactive-retrieval assim-

ilation (dashed curves), using either AIRS or HIRS. For reference, the prescribed forecast

error standard deviations are shown in the figure as well (dashed-dotted curve). Since the

error covariances are correctly specified for this experiment, interactive-retrieval assimilation
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is suboptimal only becausethe cross-covariancesbetweenretrieval errorsand forecasterrors

are not accountedfor. The error standard deviations areobtained from the diagonalof the

analysiserror covarianceP_ computed for each case.The figure shows that the analysis

error standard deviations for the two assimilation methods are virtually indistinguishable.

Not shownare the thicknessanalysiserror vertical correlations,which are alsonearly iden-

tical for the two methods.To gain someinsight into this result, we examineseparately the

contributions to the analysiserror covariancesof the forecast errors and of the radiance

errors.

We project the two components of the analysis error covariance onto the eigenvectors

of FT(Ry)-IF, which are the columns of the unitary matrix U in

FT(Ry)-'F = UDU T, (55)

with D a diagonal matrix of eigenvalues. This transformation was used in Part I to produce

compact Partial Eigen-Decomposition (PED) retrievals. The eigenveetors for the two instru-

ments are shown in Figure 2 in order of decreasing eigenvalue, that is to say, in order of

increasing uncertainty. Accordingly we can define

A= UT(I - KF)Pf(I- KF)TU (56)

and

B = UTKRYKU, (57)

corresponding to the two terms in (18) and (51). The matrix A represents the forecast error

contribution, and B the radiance error contribution, to the analysis error covariance. Figure 3

shows the diagonal elements of these two matrices on a logarithmic scale, for the optimal

(radiance assimilation) case with K = K y given by (48) and the suboptimal (interactive-

retrieval assimilation) case with K = K y,° given by (50) and (38).

Figure 3 shows that the interactive-retrieval assimilation effectively assigns too much

weight to the forecast and too little to the radiance data. The leading 7 modes are well

determined by the radiance data, so that the analysis errors for these modes are dominated

by the radiance errors. The slightly increased weight given to the forecast therefore does not

greatly affect the analysis in the leading modes. For the trailing 7 modes the situation is
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reversed:information from the forecast is dominant, and decreasingthe weight given to the

radiancedata likewisedoesnot significantly affect the analysis.For modesin betweenthese

two extremes(modes8 and 9), the influenceof the information in the forecastis comparable

to that in the radiances.The changein relative weights in thesemodesis therefore respon-

sible for most of the analysisdegradationin interactive-retrieval assimilation. As shownin

Figure 1,however,the overall degradationasmeasuredby analysiserror standarddeviations

in physical spaceis insignificant.

Figure 4 is similar to Figure 3, but usesthe aacobianand error covariancesfor the HIRS

instrument. The differencein weightsin the cross-overmodes(modes2-4)appearsto bemore

severefor HIRS than for AIRS. However,as shownin Figure 1, the overall degradation in

the suboptimal analysisis small in this caseaswell.

Table 1 showsthe condition numbersof the innovation covariancematrices (i.e., the

quantity to be inverted whensolvingthe analysisequation) for radianceassimilation and for

optimal and suboptimal retrieval assimilationfor AIRS and HIRS. The numerical condition-

ing of the analysisequationsis slightly better for suboptimal retrieval assimilation than for

radianceassimilation. This implies that solving the analysisequations(in the PSAScontext)

will be somewhatmore efficient for suboptimal retrieval assimilation than for radianceas-

similation. The condition numbersfor the innovation covarianceassociatedwith the optimal

retrieval assimilation gain matrix (37) are very high implying near singularity. This result

is expectedas explainedin section2 and by Eyre e* al. (199:3) and suggests that it will not

be possible to assimilate retrievals from nadir-viewing instruments such as AIRS and HIRS

with an optimal gain matrix.

(ii) bls'in 9 incorrect retrieval error covariances

We now examine the effect of specifying incorrect retrieval error covariances in the

assimilation. This would occnr in practice, for example, if the DAS employs a homogeneous

retrieval error covariance model, even though actual retrieval errors are state-dependent.

Equations (32, 30) show how the interactive retrieval error covariances depend on the forecast

and brightness temperature error covariances, as well as on the Jacobian of the radiative

transfer model. The latter is state-dependent due to the nonlinearity of the Planck function,

while the brightness temperature errors depend on scene brightness temperature. A colder
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scenebrightness temperature correspondsto a higher equivalent noise temperature. For

example, the HIRS2 equivalent noise temperatures for tropical and mid-latitude profiles

differ by factors ranging from about 0.8 to 1.6dependingon the channel.

For theseexperimentswe specify the interactive retrieval error covariancesusing (32,

30) as before, but with Jacobians and brightness temperature error covariances computed for

three different model-generated profiles, corresponding to a low, middle, and high-latitude

case. These profiles are described in more detail in Part I. We then assimilate, for example,

interactive retrievals in the tropics using the retrieval error covariances computed for the

mid-latitude profile. The analysis is then suboptimal, not only because cross-covariances

between retrieval errors and forecast errors are ignored, but also because the retrieval error

covariances are misspecified. V_ can still estimate the analysis error standard deviations for

these cases, by means of (51) with the gain matrix defined by, (50,38).

Figure 5 shows the estimated thickness error standard deviations for the tropical as-

similation with AIRS and HIRS, with incorrect error covariances based on the mid-latitude

profile. Solid curves correspond to (optimal) radiance assimilation, and dashed curves to

the (suboptimal) retrieval assimilation. The dotted-dashed curve indicates the forecast error

standard deviations. The differences between the analysis errors for the optimal and sub-

optimal assimilations are insignificant. We obtain similarly small differences for all other

profile combinations. These results indicate that, for these one-dimensional simulations, the

analyses are not sensitive to small misspecifications of the retrieval error covariance. In the

previous section we showed that, in certain regimes, a misspecification of the errors (e.g.,

neglecting retrieval/background cross-covariance) does not significantly harm the analysis.

The results of this section imply that, in addition, a relatively small misspecification of the

retrieval error covariance also does not significantly degrade the suboptimal retrieval assimi-

lation. This result supports the use of homogeneous retrieval error covariances for interactive

clear-sky temperature retrieval assimilation.

(b) Nor_-intevactiue retrieval assimilation

In order to simulate analysis errors that wouht obtain with non-interactive retrieval

assimilation, we need to make assumptions about the acc_lracy of the prior state estimate
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usedfor the retrieval, and about the cross-covariancesbetweenprior estimation errors and

tile forecast errors; see (42). We are interested in the situation where a forecast model

from an older or different DAS or from someother sourcesuchas climatology is used as

the prior information for the retrieval. For this experiment we take the prior estimation

error covariancesto be the sameas the forecast error covariances,except that the error

variancesare multiplied by a factor a 2. To model the forecast-prior error covariances, we

multiply the covariances that would result if the errors were perfectly correlated by a factor

3'- Thus, a = 1, 7 = 1 corresponds to interactive retrieval assimilation. As "/--+ 0 the analysis

errors may become smaller than those obtained with direct radiance assimilation, because

the prior state estimate then provides another independent source of information for the

assimilation. In reality, prior estimation errors and forecast errors are likely to be highly

correlated. As *y--+ 1 when a > 1, the analysis should degrade as the prior state estimate,

which then contains no additional information over the forecast, is assigned too much weight.

The dashed curves in Figure 6 are the estimated analysis errors for the case c_ = 1.5, _1=

0.75. As before, solid curves correspond to (optimal) radiance assimilation, and the dotted-

dashed curve indicates the forecast error standard deviations. At some altitudes, the HIRS

analysis errors actually do exceed the forecast errors. Where the information content of the

radiances is high, such as in the lower troposphere, the degradation with respect to the

optimal analysis is small.

Figures 7 and 8 show the same curves but now with 7 = 0.50 and _/= 0.25, respectively.

This corresponds to an increase in the amount of independent information contained in

the prior state estimate for the retrieval. As expected, the results improve as 7 decreases;

in fact, when *t = 0.2,5 the analysis errors are smaller than those obtained with radiance

assimilation at almost every altitude. Finally, Figure 9 shows the results for a = 2.0, "_'=

0.7.5, corresponding to the use of a relatively inaccurate prior state estimate that is highly

correlated with the forecast. Clearly the results are much worse in this case.

4. CONCLUSIONS AND FUTURE WORK

We set out in this paper to compare different ways of utilizing satellite data, either

by directly assimilating radiances in a variational framework, or by first producing one-
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dimensional retrievals and then assimilating the retrievals. Actual implementation of either

method in an operational data assimilation system involves numerous technical details, per-

raining to quality control, systematic error correction, and covariance tuning. This begs

the question whether the recent improvements in forecast skill obtained by centers that

implemented direct radiance assimilation, is due to the change in methodology, or a re-

sult of various implementation details. In any case, computational and logistical arguments

favor some form of retrieval assimilation for future high-volume data types especially for

PSAS-like assimilation systems. It is therefore important to learn as much as possible about

the expected analysis errors for various suboptimal assimilation schemes, and to investigate

whether any negative effects of retrieval assimilation are actually significant in view of the

many uncertainties inherent in any data assimilation method.

We presented a theoretical error analysis of the various assimilation methods: direct

radiance assimilation, interactive retrieval assimilation, and non-interactive retrieval assim-

ilation. As has been pointed out elsewhere, interactive retrieval assimilation amounts to a

suboptimal use of radiance data because cross-covariances between the retrieval and back-

ground errors are not accounted for in the assimilation. We showed that, in fact, interactive

retrieval assimilation is linearly equivalent to radiance assimilation with modified (hence

suboptimal) analysis weights. We then showed that the resulting degradation of analysis

accuracy is small for vertical modes that are determined either by the radiances or by the

model forecast alone, but that the degradation can be significant for modes that are not well

determined by either.

These results were further clarified with a number of one-dimensional numerical ex-

periments, for which we simulated radiance data from two different infrared sounders: the

Atmospheric InfraRed Sounder (AIRS) and the High-resolution InfraRed Sounder 2 (HIRS2).

We found that the degradation of analysis errors due to the assimilation of interactive re-

trievals, rather than radiances, is insignificant in the context of these experiments. Moreover,

when we misspecified retrieval error covarlances in the retrieval assimilation, the degradation

was still small. We also reported results from several experiments with the assimilation of

non-interactive retrievals, using different assumptions about the accuracy of the prior state

estimate used in the retrieval process, and about the cross-covariances between the prior
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estimation and forecasterrors. We found that successfulassimilation of non-interactive re-

trievals requires that the accuracyof the prior state estimatesused for the retrievals must

be at least comparableto that of the forecast. If not, then the analysismay turn out signif-

icantly worsethan in the caseof either direct radianceor interactive retrieval assimilation.

For an instrument that providesonly a small impact at best, as is the casefor TOVS in the

Northern hemisphere,assimilation of retrievals basedon inferior prior state estimatesmay

actually produceanalysesthat are lessaccuratethan the forecastitself.

Our conclusionsare basedon theoretical considerationscombined with simple one-

dimensionalsimulations.Wewould like to showin future simulationsthat similar conclusions

hold in three dimensions,whenhorizontal correlationsof forecasterrors play a role as well.

Wealsoplanto include multiple data typesin our simulationsand finally to comparedifferent

assimilation strategieswith real data in a flail data assimilation system.
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TABLE1. Conditionnumbersforthe innovationcovariancematrix

AIRS HIRS
Radianceassimilation 3.25x 103
Retrievalassimilation,neglectX (sub-optimal)5.63x102
Retrievalassimilation,accountforX (optimal) 7.59xl0s
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Figure 1. Thickness analysis error standard deviations (in m) for optimal radiance assimilation (solid lines)
and for interactive retrieval assimilation (dashed lines), using simulated AIRS and HIRS data. Forecast error

standard deviations are shown for reference (dot-dashed line).
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Figure 4. As Figure 3, for simulated HIRS2 data.
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Figure 6. As Figure 1, but for non-interactive retrieval .assimilation, using a = 1.5, ")'= 0.75 for defining the
error eovananees.
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Figure 7. As Figure 1, but for non-interactive retrieval assimilation, using a = 1.5, 7 = 0.50 for defining tile
error covariances.



ASSIMILATIONOFREMOTELY-SENSEDDATA 31

E
v

a.

10

1O0

1000

0 25

' ' ' ' I ' ' ' ' i ' ' ' ' I ' ' ' ' I ' ' ' '

)2 :_..,
,:/ //.:

,/ , J�
,s I :,,2" ,"//

s/ s !""
_ 1"

/ s s • ..1

I / /

___¢ sill�"'/.,1

:'"5

5 10 15 20

Thickness Error

Figure 8. As Figure 1, but for non-interactive retrieval assimilation, using a = 1.5, 3' = 0.25 for defining the
error covariances.
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